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Convolutional structures and marginal statistics–a

study based on K-nearest neighbours
Jugurta Montalvão, Jânio Canuto, and Elyson Carvalho

Abstract—This paper addresses statistical tricks found in deep
convolutive neural networks. First, the most relevant statistical
tricks are studied under the perspective of data scarcity, then
one of them, directly related to convolution-like structures,
is regarded as a random variable marginalization. The same
kind of marginalization is implemented in an ensemble of K-
nearest neighbours cells, where each cell yields scores instead of
class labels. Scores are then combined to improve classification
accuracy, as compared to a conventional K-nearest neighbours
classifier in experiments with two emblematic datasets—MNIST
and CIFAR-10. This improvement is regarded as evidence of
the variable marginalization effect over performance, whereas it
is discussed the potential for further lessons learned from deep
neural networks to be transferred to KNN based classifiers, whose
advantage is to allow for explainable artificial intelligence.

Index Terms—Data scarcity, explainable Artificial Intelligence,
KNN Network.

I. INTRODUCTION

Researchers in different domains are paying attention to

the so-called deep learning structures. While most published

effort are aimed at exploring the practical advantages of this

renewed tool, some researchers, since Bengio et al. [1], are

struggling to understand why modern deep neural networks

(DNN) eventually started to consistently outperform other

pattern classification structures, in spite of many years of

experimental disappointment with multiple layers of artificial

neural networks (ANN). Beyond the scientific curiosity, this

effort to provide theoretical explanations to the outstanding

performances of DNN is also driven by the increasing need

for artificial intelligence explainability, mainly in sensible

applications such as self-driven cars, or medical and military

uses.

Relevant works, such as [2] and [3] seem to converge to the

conclusion that functions implemented by DNN, although very

complicated, preserve an intrinsic rigidity caused by pattern

space foldings that help the resulting classifier to generalize

unseen samples better than shallow models. However, it was

observed, for many years of experimentation with ANN with

more than one hidden layer that these networks do not neces-

sarily yield good pattern recognition machines by themselves,

without some carefully crafted training procedures, which

can be roughly separated into three main (non-exclusive)

approaches, namely:

(a) Training each layer as an auto-encoder (stacked auto-

associators).
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(b) Greedy layer-wise supervised training.

(c) Weight sharing.

Approaches (a) and (b) were carefully studied by Bengio et

al. [1], whereas (c) has been studied since the 80’s by Yann

le Cun [4]. Record-breaking results have been obtained with

deep structures that combine (a) and (c), but impressive results

with (c) alone were pointed out many years even before the

term deep learning was coined [4]. On the other hand, strategy

(a) seems to be the starting point of the renewed interest in

DNN, through works such as [5], [6] and [7].

Whatever the understanding of how DNN works, it is

undisputed that the backpropagation used during the training

of DNN somehow encodes the training dataset as neuron

weights. Unfortunately, the resulting codes are too entangled to

allow explainable artificial intelligence. Indeed, the extraction

of rules from trained artificial neural networks is not a new

concern [8], and it seems to come back with the renewed

interest in ANN, through the DNN.

Unlike ANN, K-nearest neighbour (KNN) is a much sim-

pler pattern recognition strategy whose performance has been

studied for more than half a century, as detailed in Section III.

Simplicity and theoretical background are the main reasons

why we chose KNN for this study. Besides, KNN classifiers

explicitly use labelled patterns given for training in their

structures, which allows for straightforward manners to find

out why a given decision is made, which can be very attractive,

mainly in critical applications involving human lives, such

as in healthcare, military devices and self-driven cars. The

downside of KNN, however, is its apparent poor performance,

as compared to state of the art DNN. However, the theoretical

statements regarding KNN, recalled in Section III, suggests

that this difference can be partially explained by data scarcity,

as defined in Section II, which makes KNN even more well

fitted to this study.

Therefore, this research does not propose a new method,

but it rather studies (through KNN) the fundamental relation-

ship between intrinsic dimension of data, data scarcity and

classification performance, highlighting the statistical role of

convolution-like structures, where processing image patches

can be regarded as extracting marginal statistics (i.e. marginal

statistics of the random variable that models the image source).

Our goal is not to outperform DNN with alternative structures,

but to use KNN as a tool to understand at least some

elements that make state-of-the-art DNN to excel. Besides,

explainability is perceived as a by-product of using either KNN

or ensembles of KNN cells, which may suggest the ensembles

of KNN cells not only as a tool for theoretical studies, as we

did, but also as an actual classifier in critical applications.



In this work, however, we emphasize that only one of the

underlying statistical tricks found in DNN (as explained in

Section II) is isolated and transferred to the ensembles of KNN

cells.

This paper is organized as follows: in Section II a brief

study of the concept of scarcity is presented, along with a

definition of extreme scarcity measure, which is applied in

Section IV to set patch sizes according to the corresponding

effective manifold dimension. In Section III a network of KNN

cells is used as a structure to implement a trade-off between

data manifold dimension and training dataset size. Back to

Section IV, some experimental evidences are gathered from

experiments with two emblematic datasets, namely MNIST

[9] and CIFAR-10 [10]. In Section V we discuss the exper-

imental evidences and their implications, whereas in Section

VI we conclude this paper by delineating some straightforward

perspectives for future research.

II. DATA SCARCITY

A well-known issue in pattern recognition is that the number

of available patterns for training/learning must grow with

the dimension of manifolds were patterns are found. To

illustrate this issue through a plain reasoning, consider a one-

dimensional Real space with C classes. Lets consider, for a

while, that we accept to work with only 2 training patterns

per class (which can be referred to as extreme scarcity), which

gives at least a non-null probability of occupying both positive

and negative semiaxis, but are far from being statistically

representative of underlying pattern distributions.

Analogously, for a two-dimensional space the equivalent

extremely scarce number of training patterns per class is

22 = 4. In this case, the non-null probability of observing one

pattern in each quadrant, per class, is 4!/44 ≈ 0.09. Likewise,

for patterns in three-dimensional spaces, at least 23 = 8
samples per class are necessary to yield a non-null probability

(8!/88 ≈ 0.002) of observing one pattern in each octant. In

general, the extremely scarce number of training patterns is

N = 2L per class, for an L-dimensional (L-D) space, which

yields a non-null probability of occupying the space with at

least one pattern per L-hyperoctant of N !/NN ≈
√
2πNe−N

(de Moivre’s approximation). Thus, considering all C classes,

we define

Nscarce = C × 2L (1)

as a generalization of the extremely scarce number of training

patterns.

It is noteworthy, however, that in this definition L is the ef-

fective space dimension spanned by all observable patterns, i.e.

the effective manifold dimension where pattern are expected

to be found. Therefore, to avoid data scarcity, the number of

training patterns would be a function of its effective manifold

dimension. Unfortunately, for real-world patterns representing

images and sounds, for example, manifold dimensions are

typically too high, which would demand far too large training

datasets. For instance, training patterns in the MNIST dataset

[9] are represented as 784-D vectors (28× 28 monochromatic

pixels), although they lie in an approximately 14-D manifold.

Likewise, training images from the CIFAR-10 dataset [10] are

represented as 3072-D vectors (3 color channels, each with

32 × 32 pixels), although they lie in an approximately 35-D

manifold.

Both manifold dimensions were estimated through the

method by Farahmand et al. [11], where each image was

encoded as a real-valued vector, and the estimator parameter

was set to 22 near neighbours, as suggested by the authors.

Moreover, about 500 randomly draw patterns were used to

produce partial estimates that were averaged to yield a final

dimension estimate. All dimension estimates used further on

were obtained through the same method.

According to Eq. (1), even for MNIST, a training dataset of

60000 patterns is a small one, as compared to 10 × 214 =
163840, for the corresponding 14-D manifold dimension.

Indeed, experiments with data augmentation done by Wong

et al. [12] emphasize the smallness of the MNIST training

dataset. As for the CIFAR-10 training dataset, scarcity is

even worse, for only 50000 patterns are available, whereas

10× 235 ≫ 50000.

Similarly, by considering coarse 40-band spectral represen-

tations of half-overlapping time-windows of 20 ms, even a

single second of speech signal is represented as a pattern in

a 3960-D space (99 frames of 40-D spectral representations).

Again, even if strong lossy compression is imposed, by taking

only 12 Mel-Frequency Cepstral Coefficients (MFCC) to rep-

resent 40-band spectral contours, the single second of speech

would be represented as a 1188-D pattern. Time redundancies

may be removed yet, but there is no reason to expect a much

smaller dimensional manifold than those found for MNIST and

CIFAR-10, since speech representations through spectrograms

do yield complex images as well.

Through these examples, we are revisiting the sampling

aspect of the curse of dimensionality phenomenon, explained

in pattern recognition textbooks, but we believe it also ad-

dresses a more recent controversy, namely: data versus models,

where arguments range from references to the learning curve

experiment [13] to the recent results published by Sun et al.

[14]. In this last publication huge image databases are used,

but even there, it would not be a surprise to realise that such

datasets can still be scarce.

In this work we conjecture that data scarcity is an important

factor behind the success of DNN. That is to say that if data

scarcity is the main concern, either the manifold dimension

or the number of training examples should be modified, and

DNN do both through two complementary statistical tricks,

namely:

T1: Lossy compression trick: keeping the number of training

samples while reducing the manifold dimension.

Auto-encoders are able to find structural redundancies in

raw input variables and map these variables into a less

redundant space. Another simpler T1 implementation is

through the subdivision of patterns into subpatterns of

lower dimensionality, such as small image patches. This

strategy is the one we arbitrarily chose to study in this

paper, and it is further explained in Section III. By regard-

ing the whole image as an instance of a high-dimensional

random variable, features or scores extracted from image

patches are then regarded as marginal statistics of the
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random variable that models the image source.

T2: Data augmentation trick: keeping the effective dimension

while artificially increasing the amount of training data.

If high-dimensional patterns correspond to images taken

without constraints regarding position, rotation and scale,

then image patches are instances of identically distributed

random variables (r.v.).

The first trick encompasses many traditional approaches

in pattern recognition, such as Principal Component Analy-

sis (PCA), Nonlinear PCA, Restricted Boltzmann Machines

and Factor Analysis. By contrast, the second one has been

intrinsically used through the shared weights of convolutional

structures, as mentioned by Lin et al. [15], through the remark

that, in lower layers of convolutional networks, the scarcity

of training data is compensated by weight-sharing, “which

increases the effective number of training examples (patches

in that case) per weight by a factor of several thousand.”

In the next Section, a KNN network is used as a straight-

forward structure for implementing T1 in its simplest manner,

through the partial processing of small image patches whose

sizes are set to compensate for data scarcity.

III. MULTILAYER KNN NETWORK

The KNN is a rather old-fashioned classifier, but despite

its conceptual simplicity, theoretically rich studies of KNN

properties have been provided since Fix and Hodges [16]. For

instance, Cover and Hart [17] proved that,

“in the large sample case, this simple rule has a prob-

ability of error which is less than twice the Bayes

probability of error, and hence is less than twice

the probability of error of any other decision rule,

nonparametric or otherwise, based on the infinite

sample set”

In other words, if a given classification task based on an

infinite sample set is bounded by the minimum Bayesian error

at, say, 1%, then a KNN is theoretically able to attain error

rates lower than 2%. The other way around, if an actual

classifier such as a DNN is finely tuned to attain 1%, given

that it is expected to be greater than the Bayesian lower bound

[17], this lower bound is less than or equal to 1%, and the

theoretical proof by Cover and Hart [17] assures that a KNN

can afford a competitive performance of less than or equal to

2%, in the large sample case.

This plain reasoning leads to the following analytical state-

ment: if in any practical applications the KNN performs much

worse than a DNN, that is because the large sample condition

does not hold, whereas DNN excels mostly because it some-

how makes better use of scarce training data. If this is true,

the application of the same statistical tricks implicitly used by

DNN to other classifiers should improve their performance as

well, including the KNN.

To test this hypothesis, we first define a KNN cell that

explicitly yields C scores instead of hard decisions. This

structure can be reused in a multilayer network of KNN cells,

which in turn implements T1 in its simplest way, as explained

further on.

A KNN cell yields one score per class, as follows: given

an instance x of a random variable X , K nearest patterns

from each class are used to locally approximate the conditional

probability density function (pdf) p(x|Ωc), where Ωc stands for

the c-th class, c ∈ C = {1, 2, . . .C}. More precisely, scores

per class are given as estimates of p(x|Ωc), as

p̂(x|Ωc) =
K

∆c ×Nc

,

where ∆c stands for an estimation of volume (or hypervolume)

spanned by the K nearest neighbours of x in Dc, and Dc

stands for the set of training/reference samples from the c-th
class. In this definition, the K nearest neighbours of a pattern

x correspond to the K-coverage of this pattern, as defined by

Zhao et al. [18].

Because patterns in our experiments are high-dimensional

images (or image patches), we chose to replace distances with

inner products between normalized patterns. Consequently,

p̂(x|Ωc) is replaced by the average K highest inner products.

Therefore, this KNN implementation maps every instance x
into C values that are roughly proportional to the probability

density conditioned to each class. In general, these values

would be multiplied by the a priori probabilities of each

class, P (Ωc), and normalized to yield C scores that could

be used in a straightforward approximation to the minimum

error Bayesian classifier, according to the following decision

rule:

DEC : Ωc if p̂(x|Ωc)P (Ωc) ≥ p̂(x|Ωr)P (Ωr), ∀r ∈ C.

In our experiments with MNIST and CIFAR-10 datasets,

we assume that a priori probabilities are always the same, so

that p̂(x|Ωc) is just normalized to yield C scores, according

to:

sΩc
(x) =

p̂(x|Ωc)
∑

c∈C
p̂(x|Ωc)

. (2)

A bold s(x) is used in this text to represent a vector of C
scores associated to a given pattern. Because experiments were

done with either MNIST or CIFAR-10, both with 10 classes

of images, C is fixed to 10 in all experiments.

This KNN classifier can be used either to classify whole

images, or to extract score vectors from many (possibly

overlapping) image patches. This ensemble of patch processors

results in an image classifier as represented in Fig. 1, which

will be referred to as the KNN network. This network is

formed by many KNN cells, where each cell yields C scores

for every d× d patch, based on the training samples from the

corresponding position of the patch.

A fusion strategy for the pool of score vectors is necessary

before a final decisions is made. This strategy was designed

to be simple, as follows: each score vector, s(x(i, j)), yielded

by the image patch x(i, j), centred at row i and column j, is

first parsed to avoid null values (null values are replaced with

10−6 and the vector is renormalized to sum one). Then, each

value is compared to the guess probability P0 = 1/C and log-

transformed so that positive/negative values of log2

(

s(x(i,j))
P0

)

can be regarded as bits of evidence (in terms of Shannon
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Fig. 1. KNN network illustration. Each KNN cell yields C scores for its
corresponding d× d patch. All partial scores are fused to yield a final set of
C scores, which is eventually used to classify the whole image.

information) in favour/against a given class. The final score

vector is the sum of all resulting vectors, according to

sfinal =
∑

i,j

log2
s(x(i, j))

P0
,

which corresponds to the sum of all bits of information from

all patches, as if they were independent sources. The final

classification is done according to the index of the higher

score.

As compared to neural networks, in terms of computational

cost, the KNN network is spared of the burden of adaptive

learning. By contrast, for an M × M image to be classified

according to R pre-labelled images (training dataset), each

KNN cell does about d2 × R multiplications, resulting in an

overall computational cost of about (M − d + 1)2 × d2 × R
multiplications.

IV. EXPERIMENTAL EVIDENCES

Although every image to be classified can be taken as a

pattern, to cope with high dimensional issues (and scarcity),

patches are taken instead, whereas patch dimension, d, remains

a free parameter that allows effective dimension control.

Therefore, single d× d image patches, as illustrated in Fig. 2

with images from the CIFAR-10 dataset, are modelled either

as d2-D random variables, if only gray images are considered,

or as (3 × d2)-D r.v., if RGB color channels are considered

instead. In both cases, r.v. X(i, j) models a patch around row

i and column j in all available images in the corresponding

dataset.

The main point in this approach is the choice of the patch

size in order to compensate for data scarcity. For instance, a

5×5 (i.e. d = 5) patch around the center of all training images

in the CIFAR-10 dataset is associated to the r.v. X(16, 16),
as illustrated in Fig. 2, whose effective manifold dimension

is about 15-D. Similar manifold dimensions are estimated

for X(3, 3) and X(3, 16), what corroborates the perception

that images gathered in CIFAR-10 are barely controlled for

position and scale. Indeed, without pose control there is no

reason to expect manifold dimension as a function of the patch

position.

According to the analysis proposed in Section II, for a 15-

D pattern space, the amount of labelled images for training in

CIFAR-10 (50000 patterns) is critical, because it is less than

Nscarse = 10 × 215 = 327680. By reducing the patch size

to 3 × 3, manifold dimension is reduced to about 10-D, and

the training dataset becomes almost 6 times greater than the

corresponding critical scarcity. From this point of view, 3× 3
patches would be preferable. However, shrinking the patch size

has a price: some dependencies between neighbouring pixels

are discarded, thus causing overall performance degradation.

As for MNIST dataset, the patch sizes whose manifold

dimensions yields critical values of scarcity just below 60000

are 11 × 11 and 13 × 13, with corresponding dimensions of

about 11-D and 12-D, respectively.

To study the trade-off between manifold dimension and

overall performance after score fusion, three patch sizes were

tested in each dataset, as presented in Table I.

TABLE I
CLASSIFICATION PERFORMANCES OF THE KNN AND THE KNN

NETWORK.

Patch size MNIST CIFAR-10

3x3 - 54.90%

5x5 - 58.23%

7x7 - 56.63%

9x9 98.69% -

11x11 98.82% -

13x13 98.69% -

KNN (full image) 97.64% 39.73%

The single KNN parameter, K , was empirically set to 3 for

both MNIST and CIFAR-10 (full) images, whereas K was

set to 1 in all experiments with patches. It is known that

values of K higher than 1 are used in conventional KNN

to regularize classification boundaries. However, the network

of KNN includes a fusion of scores that also regularizes

classification boundary, thus playing the role of K values

greater than 1.

In Figs. 3 and 4, further experimental results are presented

with patch sizes 5x5, for CIFAR-10, and 11x11 for MNIST.

These results highlight the massive improvement the KNN

network provides for the most difficult dataset, CIFAR-10,

as compared to the single KNN applied to full images.

Besides, individual patches yield weak partial classifiers with

roughly similar performances. By contrast, patches in the eas-

ier MNIST database yield very irregular partial performances,

strongly dependent on the patch position. Another difference

with regard to CIFAR-10 is that, with MNIST, the fusion

of patch scores yields a rather subtle accuracy improvement,

as compared to the KNN applied to the full image. These

results are taken as evidences that trick T1 also works in the

convolution-like structure of this KNN network.

V. DISCUSSION

The classifier used in this work is an ensemble of KNN

working on parts of a pattern (image patches), therefore it is

conceptually equivalent to many existing approaches to image
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Fig. 2. Illustration of the correspondence between random variables and image
patches in CIFAR-10 dataset.

Fig. 3. Accuracy evolution in terms of added evidences from patches in
the MNIST datase. Individual accuracies associated to each patch are also
presented for comparison, as well the performance of a single KNN applied
to full images.

classification. The novelty of this work, to the extent of the

authors knowledge, is to use this kind of structure as a tool to

study the role of the fundamental trade-off between intrinsic

dimension of data and number of available observation, and

how it can explain, in part, the good results obtained with

DNN-like structure. Thus, we highlight that outperforming

state-of-the-art classifiers is not the goal of this work.

In terms of decisions explainability, an advantage of using

KNN comes from the fact that training patterns are explicitly

used in its structure. Therefore, unlike DNN, where these

patterns are somehow encoded in the neuronal connections,

every KNN in the network can be interrogated regarding

which training patterns were the most important for their

partial contribution (in terms of scores).

Fig. 4. Accuracy evolution in terms of added evidences from patches in
the CIFAR-10 datase. Individual accuracies associated to each patch are also
presented for comparison, as well the performance of a single KNN applied
to full images.

This is the most straightforward manner to address the

problem, but we believe that many more elaborated approaches

for explained decisions can be easily deployed. To give a

simple example, Fig. 5 illustrates how the accumulated scores

can be used to explain the classifier decision. For this il-

lustration, we created an artificial image from two samples

from the CIFAR-10 test database, namely: image 106 (labelled

automobile) and image 217 (labelled horse). Evidences in

favour of class horse rises consistently until about patch 252.

Given the indicated progression of patches over the image, it

can be noticed that the change in evidence accumulation trend

roughly corresponds to the edition boundary between the two

original images.

Fig. 5. Illustration of how the accumulated scores can be used to explain
the classifier decision. The image results from a combination of images 106
(labelled automobile) and 217 (labelled horse) in the CIFAR-10 test database.
Evidences in favour of class horse rise consistently until about patch 252.
Afterwards, a clear rising of evidences in favour of class automobile dominates
until the last patch.

If KNN based strategies could be improved to state-of-

the-art performances obtained with DNN, it would yield a

potentially advantageous alternative to DNN, mainly in critical

applications involving human lives, such as in healthcare,

military devices and self-driven cars. In this first attempt, we

were able to isolate at least one strategy to compensate for data
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scarcity in DNN, and successfully transfer it to a network of

KNN cells.

Interestingly, accuracies of 98.82% and 58.23%, for MNIST

and CIFAR-10, respectively, are comparable to results reported

in publications during the early days of the deep learning

era for the same databases. For instance, as reported by

Bengio et al. [1], for the MNIST test set, a DNN with layers

initialized as auto-encoders (prior to back-propagation final

adjustments) yielded error rate of 1.6%, whereas another DNN

with supervised greedy layer-wise algorithm to pre-train each

layer yielded error rate of 1.9%.

Likewise, some DNN used by Krizhevsky and Hinton [10]

to classify images from the test set of CIFAR-10 yielded

accuracies below the 58.23% attained by the KNN network.

More recently, Lin et al. [15] studied the limits of deep neural

nets without convolution, and according to their results, we

can conclude that the KNN network outperforms at least four

ReLU1 based DNN with different configurations, including

the ReLU-Lin network, whose structure (represented by the

authors as 4000ReLU-1000Linear-4000ReLU) interleaves a

linear layer between two ReLU layers, all trained with su-

pervised back propagation using stochastic gradient descent

with momentum. It is noteworthy that their ReLU-Lin network

outperforms all the pure ReLU networks, reaching an accuracy

of 56.84%.

Lin et al. [15] further report that performances without

convolution are boosted when they give up on permutation-

invariance (by using data augmentation), thus attaining 78.62%
with the same structure. This indirectly corroborates the ideas

pursued in this paper concerning the importance of data

scarcity in DNN scenarios. Besides, it suggests that the KNN

network can also be improved through data augmentation.

We highlight that the single statistical trick transferred to the

KNN network was the raw dimensional reduction imposed by

the use of image patches. Further tricks are to be studied in

the sequel of this work, including another important lesson

learned from DNN, namely, the implicit data augmentation in

convolutional strategy. For now, the convolution-like structure

in Fig. 1 is just partially exploited, since it has no equivalent

to the weight sharing of Convolutional Neural Networks, what

would correspond to trick T2.

Another important lesson not taken into account in the KNN

network is the hierarchical combination of information from

patches. The KNN network is naive in the sense that patches

are independently processed, and evidences are fused as if

score vectors were statistically independent. It is noteworthy

that shrinking patch size to fit scarcity requirements has a cost,

which is the degradation of classification performance due

to the loss of dependence information between pixels from

different patches. The current implementation of the KNN

network discards this information. Thus, a potentially relevant

improvement to the KNN network is the inclusion of some

hierarchical recombination of information, as in DNN, but it

is beyond the purpose of this work.

1ReLU is an acronym for Rectified Linear Unit, a kind of activation function
used in artificial neurons.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we conjecture that what makes DNN con-

sistently outperform other classifiers are the many ways it

tackles data scarcity. To test it, we first define a critical value of

scarcity which is dependent of the dimension of the manifold

spanned by the available training patterns. We further propose

the categorization of relevant strategies to cope with data

scarcity into either dimension reduction or data augmentation.

The first encompasses many traditional pattern classification

tools, including auto-encoders and projections such as image

patches, whereas the second can be done explicitly (e.g. in-

clusion of translated/rotated/distorted images into the database,

as in [19]), or implicitly through convolutional strategies, as

pointed out by [15], concerning shared weights in CNN.

Processing separately image patches can be regarded as the

simplest dimension reduction strategy, conceptually equivalent

to using marginal statistics of the random variable that models

the image source. We arbitrarily chose to isolate this effect in

a KNN structure, yielding a simple network of KNN cells. The

choice of a KNN based approach was also motivated by the

explainability issue in DNN. Indeed, KNN makes decisions

based on stored patterns, what allows for a myriad of straight-

forward strategies to trace back and understand decisions.

Moreover, KNN is suitable in cases were it is advantageous

to trade the training period for memory. Another potentially

desirable consequence is that classification results are not

dependent on arbitrary initialization of learning parameters

choices.

The KNN network provided results that, mainly for the

CIFAR-10 dataset, confirmed the expected performance gain,

due to a careful choice of the manifold dimension correspond-

ing to patches in each dataset. We recall that, according to

Cover and Hart [17], when data is abundant, we should not

expect an attractive advantage of DNN over KNN. Purposely,

we also remark that, for the MNIST dataset, whose scarcity

is moderate, the performance of a simple KNN is rather

competitive, whereas for CIFAR-10, whose scarcity is much

bigger, KNN yields a very modest accuracy. These two results,

added to the significant improvement of performance with the

KNN network on the CIFAR-10 dataset corroborate the idea

that the main hinging factor for limited performances of usual

KNN is data scarcity.

This work is a step towards the understanding of theoretical

principles that give power to DNN, and building alternative

structures using these principles. In this first attempt, only one

of the principles was isolated, and we believe that the next

significant performance factors to be studied are implicit data

augmentation and hierarchical recombination of information,

as discussed in the former section. We believe that, concerning

the pattern recognition field, diversity of methods (with their

different strengths and weakness) is a healthy goal in itself.
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He received the title of Electrical Engineer (2007)
from the Federal University of Sergipe (UFS), M.Sc.
in Electrical Engineering (2010) from the State
University of Campinas (UNICAMP) and Ph.D. in
Computer Science (2014) from Télécom SudParis.
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